Parameters

The 3D Ising 2D T’-Expansion Scheme (TExS) has a variety of input parameters ranging from grid choices to 3D-Ising to QCD mapping parameters. The output file will correspond to the selected parameter choices.

In this section, you will find detailed explanations of the parameters used.

As described in the Quick Start Guide, in order to run the Ising-2DTExS EoS module, the user must provide a config.yaml file. The purpose of this file is to supply all the configuration data required to run the module, such as input data and program options. The rules for this input file are specified in the OpenAPI 3.0.0 Specification file provided by the module.

Each time the module is executed, it reads the config.yaml file provided by the user and verifies that the input conforms to the OpenAPI specifications. If it does not, module execution will be unsuccessful. When this happens, make sure to check the logs to identify the issue with your configuration.

It is not necessary to specify every single parameter in the configuration file. If any parameter is omitted, it will be automatically assigned its default value. The default values for each parameter can be found in the OpenAPI specification.

Upon successful execution, the module may produce several output files. These are described in the OpenAPI specification as part of the output schema. Not all of these files are created during every run, and some require the user to specify particular options in the config file.

Below are tables providing a brief overview of module input, internal and output file parameter. These include parameter names, default values, and descriptions similar to those in the OpenAPI specification file for the module.

Input Parameters

Input parameters required to execute the Ising-2DTExS module. All parameters have default values in case the user does not specify any.

Category Description

Input Parameter

Default

Description

Grid

T_min

30.0

Minimum temperature in MeV

T_max

400.0

Maximum temperature in MeV

dT

10.0

Step size in temperature in MeV

mu_B_min

0.0

Minimum baryon chemical potential in MeV

mu_B_max

700.0

Maximum baryon chemical potential in MeV

dmu_B

10.0

Step size in baryon chemical potential in MeV

3D Ising to QCD

Mapping parameter

muBC

350.0

Location of the critical point in MeV

alpha12

90.0

Angle between the mapping axes r (reduced temperature) and h (external magnetic field) in the mapping diagram

w

5.0

Controls the strength of the critical point in the QCD phase diagram

rho

4.0

Controls the shape of the critical region in the QCD phase diagram

The following is an example of a config.yaml file for the Ising-2DTExS module.

parameters:
  T_min: 30.0
  T_max: 400.0
  dT: 10.0
  mu_B_min: 0.0
  mu_B_max: 400.0
  dmu_B: 10.0
  muBC: 350
  alpha12: 90.0
  w: 5.0
  rho: 1.0
switchers:
  get_P: True
  get_s_dens: True
  get_B_dens: True
  get_E_dens: True
  get_c_s: True
  get_chi2B: True

Output Parameters

Equation of State

The output files generated by the module include in .csv format and saved in the output directory.

Equation of State Data (EoS.csv):

This file contains tabulated values for thermodynamic observables such as temperature, pressure, energy density, baryon density, entropy density, and baryon number susceptibility. The data can be visualized as curves for each quantity as a function of temperature or baryon chemical potential.

Here is an example of the EoS output file structure:

30.0, 0.0, 0.005, 0.02, 0.10, 0.01, 0.0003, 0.15
40.0, 0.0, 0.010, 0.05, 0.20, 0.02, 0.0005, 0.18
50.0, 0.0, 0.015, 0.10, 0.30, 0.03, 0.0008, 0.22

Internal Parameters

Here we show the internal input parameters from lattice data used for the calculation of the EoS.

  • Lattice Pressure:

The parameterized lattice pressure at zero chemical potential is calculated using the following formula:

\[P_{0,\text{lat}}(T) = \frac{a_0 + a_1 x +a_2 x^2 +a_3 x^3 +a_4 x^4 +a_5 x^5}{b_0 +b_1 x +b_2 x^2 +b_3 x^3 +b_4 x^4 +b_5 x^5} \qquad\text{where}\qquad x = \frac{154}{T}\]

\(a_0\)

\(a_1\)

\(a_2\)

\(a_3\)

\(a_4\)

\(a_5\)

\(b_0\)

\(b_1\)

\(b_2\)

\(b_3\)

\(b_4\)

\(b_5\)

7.53891

-6.18858

-5.37961

7.08750

0.977970

0.0302636

2.24530

6.02568

15.3737

19.6331

10.2400

0.799479

  • Lattice baryon number susceptibility:

The parameterized lattice baryon number susceptability at zero chemical potential is calculated using the following formula:

\[\chi_{2,\text{lat}}^B(T) = \left(\frac{2m_p}{\pi x}\right)^{3/2} \frac{e^{-m_p/x}}{1+\left(\frac{x}{d_1}\right)^{d_2}} + d_3\frac{e^{-d_4^2/x^2 - d_5^4/x^4}}{1+ \left(\frac{x}{d_1}\right)^{-d_2}} \qquad\text{where}\qquad x = \frac{T}{200 \, \text{MeV}}\]

and \(m_p\) being the proton mass. Coefficients of the parameterized \(\chi_{2,\text{lat}}^B(T)\) for \(25~\text{MeV} \leq T \leq 800~\text{MeV}\):

\[\]
  • Lattice kappa2 coefficients:

The parameterized \(T^\prime\) lattice coefficients \(\kappa_2^{BB}\) is calculated using the following formula:

\[\kappa_{2}^{BB}(T) = \frac{A_1 b_0 x + a_2 x^2 + a_3 x^3 + A_2 x^4}{b_0 + b_1 x + x^2}\]

where, again, \(x = \frac{T}{200 \, \text{MeV}}\), \(A_1 = 0.035\) and \(A_2 = 1.47\). Best-fit parameters for \(\kappa_2^{BB}(T)\) are listed in the Table below.

\(a_2\)

\(a_3\)

\(b_0\)

\(b_1\)

0.652

-2.60

21.4

-9.81