Configuration File

The config.yaml file contains all run-time options for this module. Below we list the exact default configuration and a description for every option.

Default configuration

Exact defaults used by the module:

model:
    Real_Lambda: 602.3
    G_times_Lambda_squared: 1.835
    K_times_Lambda_to_the_fifth: 12.36
    eta_D: 1.5
    eta_V: 0.8
    m_u: 5.5
    m_d: 5.5
    m_s: 140.7
    RG_consistency: true
    RG_scheme: minimal
    Lambda_RG: 20.
iteration:
    number_of_cpus: 0
    T_iteration_start: 1.
    T_iteration_end: 1.
    T_iteration_step: 1.
    mu_iteration_start: 0.
    mu_iteration_end: 600.
    mu_iteration_step: 1.
    mu_Q_iteration_start: 0.
    mu_Q_iteration_end: 0.
    mu_Q_iteration_step: 1.
    mu_Strangeness_iteration_start: 0.
    mu_Strangeness_iteration_end: 0.
    mu_Strangeness_iteration_step: 1.
files:
    outdir: example
    outfile: example.csv
conditions:
    charge_neutrality: true
    color_neutrality: true
    include_leptons: true
    beta_eq: true
rootfinder:
    #rootfinder control
    inherit_starting_values: true
    rootf_epsabs: 1.e-7
    rootf_maxiter: 1000
    rootf_alg: 0
integration:
    #cubature integration control
    cubaturemaxeval: 100000
    reqAbsError: 1e-7
phase_specific:
    #what is the phase you want to calculate?
    phase: [chiral, twoSC, CFL]
    #do you want to provide custom starting guesses for the solution of the gap equations below?
    custom_guesses: false
    chiral:
        M_u_start: 50.
        M_d_start: 50.
        M_s_start: 300.
        Delta_1_start: 0.
        Delta_2_start: 0.
        Delta_3_start: 0.
        mu_Q_start: 0.
        mu_3_start: 0.
        mu_8_start: 0.
        mu_tilde_V_start: 0.
    NQM:
        M_u_start: 50.
        M_d_start: 50.
        M_s_start: 300.
        Delta_1_start: 0.
        Delta_2_start: 0.
        Delta_3_start: 0.
        mu_Q_start: 0.
        mu_3_start: 0.
        mu_8_start: 0.
        mu_tilde_V_start: 0.
    twoSC:
        M_u_start: 50.
        M_d_start: 50.
        M_s_start: 300.
        Delta_1_start: 0.
        Delta_2_start: 0.
        Delta_3_start: 0.
        mu_Q_start: 0.
        mu_3_start: 0.
        mu_8_start: 0.
        mu_tilde_V_start: 0.
    twoSC_us:
        M_u_start: 50.
        M_d_start: 50.
        M_s_start: 300.
        Delta_1_start: 0.
        Delta_2_start: 0.
        Delta_3_start: 0.
        mu_Q_start: 0.
        mu_3_start: 0.
        mu_8_start: 0.
        mu_tilde_V_start: 0.
    twoSC_ds:
        M_u_start: 50.
        M_d_start: 50.
        M_s_start: 300.
        Delta_1_start: 0.
        Delta_2_start: 0.
        Delta_3_start: 0.
        mu_Q_start: 0.
        mu_3_start: 0.
        mu_8_start: 0.
        mu_tilde_V_start: 0.
    uSC:
        M_u_start: 50.
        M_d_start: 50.
        M_s_start: 300.
        Delta_1_start: 0.
        Delta_2_start: 0.
        Delta_3_start: 0.
        mu_Q_start: 0.
        mu_3_start: 0.
        mu_8_start: 0.
        mu_tilde_V_start: 0.
    dSC:
        M_u_start: 50.
        M_d_start: 50.
        M_s_start: 300.
        Delta_1_start: 0.
        Delta_2_start: 0.
        Delta_3_start: 0.
        mu_Q_start: 0.
        mu_3_start: 0.
        mu_8_start: 0.
        mu_tilde_V_start: 0.
    sSC:
        M_u_start: 50.
        M_d_start: 50.
        M_s_start: 300.
        Delta_1_start: 0.
        Delta_2_start: 0.
        Delta_3_start: 0.
        mu_Q_start: 0.
        mu_3_start: 0.
        mu_8_start: 0.
        mu_tilde_V_start: 0.
    CFL:
        M_u_start: 50.
        M_d_start: 50.
        M_s_start: 300.
        Delta_1_start: 0.
        Delta_2_start: 0.
        Delta_3_start: 0.
        mu_Q_start: 0.
        mu_3_start: 0.
        mu_8_start: 0.
        mu_tilde_V_start: 0.

Options

model

  • Real_Lambda: (number, default: “602.3”) Value of the original NJL model cutoff in MeV.

  • G_times_Lambda_squared: (number, default: “1.835”) NJL scalar coupling G in units of Lambda squared.

  • K_times_Lambda_to_the_fifth: (number, default: “12.36”) KMT interaction (\(U_A(1)\)-breaking determinant interaction) coupling in units of Lambda^5.

  • eta_D: (number, default: “1.5”) Ratio of diquark coupling to scalar NJL coupling.

  • eta_V: (number, default: “0.8”) Ratio of vector coupling to scalar NJL coupling.

  • m_u: (number, default: “5.5”) Bare mass of the up quark.

  • m_d: (number, default: “5.5”) Bare mass of the down quark.

  • m_s: (number, default: “140.7”) Bare mass of the strange quark.

  • RG_consistency: (boolean, default: “true”) Whether to enforce RG consistency.

  • RG_scheme: (string, default: “minimal”) Renormalization-group scheme.

  • Lambda_RG: (number, default: “20.0”) High initial flow energy scale to ensure RG-consistency in units of Real_Lambda. Ideally as large as possible, but for 10-20 times Real_Lambda, results are practically converged.

iteration

  • number_of_cpus: (integer, default: “0”) Number of CPUs to use in parallel for the phase diagram calculation.

  • T_iteration_start: (number, default: “1.0”) Smallest Temperature.

  • T_iteration_end: (number, default: “1.0”) Largest Temperature.

  • T_iteration_step: (number, default: “1.0”) Stepsize for Temperature loop.

  • mu_iteration_start: (number, default: “0.0”) Smallest quark chemical potential.

  • mu_iteration_end: (number, default: “600.0”) Largest quark chemical potential.

  • mu_iteration_step: (number, default: “1.0”) Step size for quark chemical potential loop.

  • mu_Q_iteration_start: (number, default: “0.0”) Smallest electric charge chemical potential.

  • mu_Q_iteration_end: (number, default: “0.0”) Largest electric charge chemical potential.

  • mu_Q_iteration_step: (number, default: “1.0”) Step size for electric charge chemical potential loop.

  • mu_Strangeness_iteration_start: (number, default: “0.0”) Smallest strangeness charge chemical potential.

  • mu_Strangeness_iteration_end: (number, default: “0.0”) Largest strangeness charge chemical potential.

  • mu_Strangeness_iteration_step: (number, default: “1.0”) Step size for strangeness charge chemical potential.

files

  • outdir: (string, default: “example”) Subdirectory in ../output/ where the results are placed.

  • outfile: (string, default: “example.csv”) Output file name in outdir.

conditions

  • charge_neutrality: (boolean, default: “true”) Whether to enforce electric charge neutrality

  • color_neutrality: (boolean, default: “true”) Whether to enforce color neutrality

  • include_leptons: (boolean, default: “true”) Whether to include electrons and muons as a relativistic gas.

  • beta_eq: (boolean, default: “true”) Whether to fix the charge chemical potential \(mu_Q\) by \(\beta\) equilibrium.

rootfinder

  • inherit_starting_values: (boolean, default: “true”) Whether to use the result of the last optimization as a starting guess for the next point in the iteration.

  • rootf_epsabs: (number, default: “1.e-7”) Absolute tolerance for rootfinder, for the rootfinder control

  • rootf_maxiter: (integer, default: “1000”) Maximum iterations for rootfinder, for the rootfinder control

  • rootf_alg: (integer, default: “0”) Algorithm for rootfinder, for the rootfinder control (0=hybrids, 1=hybrid, 2= dnewton, 3= broyden), see gsl_multiroot documentation

integration

  • cubaturemaxeval: (integer, default: “100000”) Maximum function evaluations for cubature (all numerical integrals)

  • reqAbsError: (number, default: “1.e-7”) Required absolute error for cubature (all numerical integrals)

phase_specific

  • phase: (array, default: “[chiral, twoSC, CFL]”) Phases to calculate: chiral broken phase (=chiral), partially restored phase (=NQM), two-color superconducting phase with up-down (twoSC), up-strange (twoSC_us) or down-strange (twoSC_ds) pairing, uSC, dSC and sSC phases or color-flavor-locking phase (=CFL). Depending on the phase, other color- superconducting condensates are set to zero.

  • custom_guesses: (boolean, default: “false”) Whether to provide custom starting guesses for the solution of the gap equations

  • M_u_start: (number, default: “50.0”) Starting value for the up quark mass, M_u in MeV

  • M_d_start: (number, default: “50.0”) Starting value for the down quark mass, M_d in MeV

  • M_s_start: (number, default: “300.0”) Starting value for the strange quark mass, M_s in MeV used at iterate_central (and during the iteration if inherit_starting_values is set to false)

  • Delta_1_start: (number, default: “0.0”) Starting value for the diquark condensate Delta_1 (down-strange pairing) in MeV used at iterate_central (and during the iteration if inherit_starting_values is set to false). Only used if phase is in [twoSC_ds,dSC,sSC,CFL]

  • Delta_2_start: (number, default: “0.0”) Starting value for the diquark condensate Delta_2 (up-strange pairing) in MeV used at iterate_central (and during the iteration if inherit_starting_values is set to false). Only used if phase is in [twoSC_us,uSC,sSC,CFL]

  • Delta_3_start: (number, default: “0.0”) Starting value for the diquark condensate Delta_3 (up-down pairing) in MeV used at iterate_central (and during the iteration if inherit_starting_values is set to false). Only used if phase is in [twoSC,uSC,dSC,CFL]

  • mu_Q_start: (number, default: “0.0”) Starting value for the electric charge chemical potential, mu_Q in MeV, if not fixed by mu_Q_fixed

  • mu_3_start: (number, default: “0.0”) Starting value for the color charge chemical potential related to the third generator of SU(3), mu_3 in MeV, if not fixed by mu_3_fixed

  • mu_8_start: (number, default: “0.0”) Starting value for the color charge potential related to the eighth generator of SU(3), mu_8 in MeV, if not fixed by mu_8_fixed

  • mu_tilde_V_start: (number, default: “0.0”) Starting value for the effective chemical potential mu_tilde_V if the vector coupling is nonzero. (mu_tilde_V = mu - 2*G_vector*n_quark)