Units

Geometrized units are often used in general relativity where \(G=c=1\). For neutron stars, it is convenient also to set \(M_{\odot}=1\). So, the overall units are \(G=c=M_{\odot}=1\). This is the system of units used in QLIMR. That is equivalent to make all quantities dimensionless with respect to one solar mass in units of length (\(\ell_{\odot} \sim 1.5 \, \textrm{km}\)). The following table shows the non-geometrized dimensions (NGD), geometrized dimensions (GD), neutron star dimensions (NSD) and the conversion factors between them for all the relevant quantities (Q) used in the source code.

Q

NGD

GD

NGD \(\rightarrow\) GD

GD \(\rightarrow\) NGD

NGD \(\rightarrow\) NSD

NSD \(\rightarrow\) NGD

\(\varepsilon_{c}\)

\(\mathsf{L}^{-1}\mathsf{T}^{-2}\mathsf{M}\)

\(\mathsf{L}^{-2}\)

\(G/c^{4}\)

\(c^{4}/G\)

\(G \ell^{2}_{\odot}/c^{4}\)

\(c^{4}/G \ell^{2}_{\odot}\)

\(R_{\star}\)

\(\mathsf{L}\)

\(\mathsf{L}\)

1

1

1/\(\ell_{\odot}\)

\(\ell_{\odot}\)

\(M_{\star}\)

\(\mathsf{M}\)

\(\mathsf{L}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell_{\odot}c^{2}\)

\(\ell_{\odot}c^{2}/G\)

\(I\)

\(\mathsf{L}^{2}\mathsf{M}\)

\(\mathsf{L}^{3}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell_{\odot}^{3}c^{2}\)

\(\ell_{\odot}^{3}c^{2}/G\)

\(\lambda^{\textsf{(tid)}}\)

\(\mathsf{L}^{2}\mathsf{T}^{2}\mathsf{M}\)

\(\mathsf{L}^{5}\)

\(G\)

\(1/G\)

\(G/\ell^{5}_{\odot}\)

\(\ell^{5}_{\odot}/G\)

\(Q\)

\(\mathsf{L}^{2}\mathsf{M}\)

\(\mathsf{L}^{3}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell^{3}_{\odot}c^{2}\)

\(\ell^{3}_{\odot}c^{2}/G\)

\(e_{s}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\delta R_{\textrm{eq}}\)

\(\mathsf{L}\)

\(\mathsf{L}\)

1

1

1/\(\ell_{\odot}\)

\(\ell_{\odot}\)

\(\langle\delta R_{\star}\rangle\)

\(\mathsf{L}\)

\(\mathsf{L}\)

1

1

1/\(\ell_{\odot}\)

\(\ell_{\odot}\)

\(\delta M_{\star}\)

\(\mathsf{M}\)

\(\mathsf{L}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell_{\odot}c^{2}\)

\(\ell_{\odot}c^{2}/G\)

\(h\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(R\)

\(\mathsf{L}\)

\(\mathsf{L}\)

1

1

1/\(\ell_{\odot}\)

\(\ell_{\odot}\)

\(\varepsilon\)

\(\mathsf{L}^{-1}\mathsf{T}^{-2}\mathsf{M}\)

\(\mathsf{L}^{-2}\)

\(G/c^{4}\)

\(c^{4}/G\)

\(G \ell_{\odot}^{2}/c^{4}\)

\(c^{4}/G \ell_{\odot}^{2}\)

\(p\)

\(\mathsf{L}^{-1}\mathsf{T}^{-2}\mathsf{M}\)

\(\mathsf{L}^{-2}\)

\(G/c^{4}\)

\(c^{4}/G\)

\(G \ell_{\odot}^{2}/c^{4}\)

\(c^{4}/G \ell_{\odot}^{2}\)

\(\nu\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(Y\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\Omega\)

\(\mathsf{T}^{-1}\)

\(\mathsf{L}^{-1}\)

\(1/c\)

\(c\)

\(\ell_{\odot}/c\)

\(c/\ell_{\odot}\)

\(\varpi_{1}\)

\(\mathsf{T}^{-1}\)

\(\mathsf{L}^{-1}\)

\(1/c\)

\(c\)

\(\ell_{\odot}/c\)

\(c/\ell_{\odot}\)

\(\xi_{2}\)

\(\mathsf{L}\)

\(\mathsf{L}\)

1

1

1/\(\ell_{\odot}\)

\(\ell_{\odot}\)

\(h_{2}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(K_{2}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(m_{2}\)

\(\mathsf{M}\)

\(\mathsf{L}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell_{\odot}c^{2}\)

\(\ell_{\odot}c^{2}/G\)

Note: The units for the input and output parameters are provided in the Parameters section.